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 Maximum Likelihood Computations With Repeated

 Measures: Application of the EM Algorithm
 NAN LAIRD, NICHOLAS LANGE, and DANIEL STRAM*

 The purpose of this article is to consider the use of the EM algorithm
 (Dempster, Laird, and Rubin 1977) for both maximum likelihood (ML)
 and restricted maximum likelihood (REML) estimation in a general re-
 peated measures setting using a multivariate normal data model with
 linear mean and covariance structure (Anderson 1973). Several models
 and methods of analysis have been proposed in recent years for repeated
 measures data; Ware (1985) presented an overview. Because the EM

 algorithm is a general-purpose, iterative method for computing ML es-
 timates with incomplete data, it has often been used in this particular
 setting (Dempster et al. 1977; Andrade and Helms 1984; Jennrich and
 Schluchter 1985).

 There are two apparently different approaches to using the EM al-
 gorithm in this setting. In one application, each experimental unit is
 observed under a standard protocol specifying measurements at each of
 n occasions (or under n conditions), and incompleteness implies that the
 number of measurements actually collected on each unit is less than the
 requisite n for at least some units. In this circumstance, incompleteness
 may be modeled if one regards the measurements actually collected as
 the observed data, the conceptual set of n measurements on each indi-
 vidual as the complete data, and the unobserved data as the missing
 measurements on those units with fewer than n observations. Application
 of the EM algorithm in this setting [referred to as "missing data" in
 Dempster et al. (1977) and "incomplete data" in Jennrich and Schluchter
 (1985)] was discussed by Orchard and Woodbury (1972), Beale and Little
 (1975), and Jennrich and Schluchter (1985).

 One drawback of this approach in the longitudinal data setting is that
 the multivariate model with linear mean and covariance structure does
 not, in general, possess closed-form solutions even with complete data
 (Anderson 1973; Szatrowski 1980). Thus implementing the EM algorithm
 requires either an iterative M step within each EM iteration or the use
 of a generalized EM (GEM) algorithm that requires only that the com-
 plete data likelihood be increased rather than maximized at each M step.
 A second drawback is that this approach requires specification of the
 covariates for both the observed and the missing observations. If the
 covariates are unknown for the missing observations, arbitrary values

 must be specified, which may affect the rate but not the final point of
 convergence (Jennrich and Schluchter 1985).

 The second application of the EM algorithm arises naturally when we
 use mixed models to analyze serial measurements. In this setting, the
 incomplete data are modeled quite differently. The observed data are

 as before, that is, the measurements actually collected on each unit. The
 complete data, however, consist of the observed data plus the unob-
 servable random parameters and error terms specified in the mixed model.
 Thus the missing data (the random parameters and error terms) would
 not be viewed as data in the traditional statistical sense. Laird and Ware
 (1982) and Andrade and Helms (1984) took this approach.

 This article shows that the latter approach is more general and en-

 compasses the missing-data approach as a special case. This result has
 several important applications. First, it means that EM algorithms en-
 coded for models with random effects can also be used for multivariate
 normal models with arbitrary covariance structure and missing data.

 Second, this approach avoids specification of covariates for missing ob-
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 servations. Finally, use of the general formulation means that closed-
 form solutions for the complete data maximization will exist for a much
 broader class of models, enabling one to avoid use of GEM or iterations
 within each M step.

 For a certain class of multivariate growth curve models with random
 effects structure (Reinsel 1982), closed-form solutions exist for both ML
 and REML estimates of the mean and covariance parameters. Formulas
 for these closed-form solutions are given that are applicable whenever

 the solution is not on the boundary.

 The choice of starting values for the EM iterations is important, since
 the EM algorithm will not, in general, converge from arbitrary starting
 values to the closed-form solution (if it exists) in one iteration. Several
 possibilities for starting values are given.

 The rate of convergence of the EM algorithm is generally linear. The
 actual speed of convergence in two data examples is shown to depend
 heavily on both the actual data set and the assumed structure for the
 covariance matrix. We discuss two methods for accelerating convergence,
 which we find are most useful when the covariance matrix is assumed
 to have a random effects structure. When the covariance matrix is as-
 sumed to be arbitrary, the EM iterations reduce to familiar iteratively
 reweighted least squares (IRLS) computations. The EM algorithm has
 the unusual property in this setting that when all of the data are complete
 (no missing observations), the iterations are still IRLS, but the rate of
 convergence changes from linear to quadratic.

 KEY WORDS: Mixed models; Restricted maximum likelihood; Growth
 curves with random parameters; Aitken acceleration; Linear patterned
 covariance matrices.

 1. INTRODUCTION

 We begin by defining the multivariate normal data model
 and by demonstrating its generality for modeling both the
 mean vector and the correlation structure of the obser-
 vations. Next, we give the iterative equations that define
 the EM algorithm. Finally, we discuss the existence of
 closed-form solutions in balanced data cases, computation
 of starting values for the iterations, and methods for speed-
 ing convergence. Two data examples are used to illustrate
 features of convergence.

 2. THE GENERAL LINEAR MIXED MODEL FOR
 REPEATED MEASURES, GROWTH CURVE, OR SERIAL

 MEASUREMENT DATA

 2.1 General Formulation and Relation to
 ANOVA Models

 The general model that we use to characterize the com-
 mon structure of repeated measures, growth curve, or se-
 rial measurements data is that described by Laird and
 Ware (1982). Specifically, let yi denote an ni x 1 vector
 of ni measurements observed on the ith experimental unit.
 We assume the model

 Yi= Xi1 + Zibi + ei, (2.1)
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 where Xi and Zi are known ni x p and ni x q design
 matrices, ot is a vector of fixed effects to be estimated,

 and bi and ei are independent random vectors distributed
 as N(O, D) and N(O, o2I), respectively. Here D is a pos-
 itive semidefinite q x q matrix of unknown parameters

 to be estimated, and Ii is the ni x ni identity matrix. It
 thus follows that

 E(yi) -Xit,

 var(yi) = 1= 2I, + ZiDZT,

 and

 cov(yi, y) = 0, i ] j,

 for i = 1, .. , m units.

 The form of Xi = var(yi) is the familiar variance com-
 ponents structure. It offers an approach to modeling Xi
 that is especially useful when individuals have varying pat-

 terns or times of observations, or large numbers of ob-
 servations, as in the data examples in Hui and Berger
 (1983) and Dempster, Rubin, and Tsutakawa (1981). In
 some settings, each unit may be observed under a standard

 protocol, and, provided the number of observations on

 each unit is not large, one may prefer to assume that

 var(yi) is unrestricted. This may be achieved in the vari-
 ance components model by taking a72 = 0, and Zi =
 'nxn if a unit is measured at all n occasions. A unit missing
 observations at some occasions (ni < n) would have Zi as
 the rows of the identity matrix corresponding to occasions
 when measurements were made. Then

 var(yi) = D when ni = n

 or

 var(yi) = ZiDZT Di when ni < n,

 where Di denotes the ni x ni submatrix formed by deleting
 the rows and columns of D corresponding to the missing

 observations. When one is using the EM algorithm, setting
 a72 = 0 is easily accomplished by choice of starting values.

 For any model, we let 0 denote the vector consisting of
 a72 and the unique elements of D to be estimated. In gen-
 eral, no restrictions are put on D; in Section 2.3 we discuss
 the utility of assuming special structure on D. Jennrich

 and Schluchter (1985) considered both first-order and gen-
 eral autoregressive structures for D, as well as D arbitrary.

 If we write yT = (yT . . ., yT) then the linear mixed
 model for y has exactly the same form as the model dis-
 cussed by Harville (1977), except that the implied covari-

 ance structure for y is block diagonal, with the m i's
 making up the elements on the diagonal. Thus our model
 is a special case of Harville's in which the only random
 factors are individual units and the interactions of unit
 with occasion or period variables. If D is diagonal and
 each Z1 consists of only zeros and ones, our model re-
 duces to a special case of the general analysis of variance
 (ANOVA) mixed model, with one random factor corre-

 sponding to experimental units and any other random fac-

 tor being an interaction of unit with another categorical

 variable. The compound symmetry model is a common
 simplification of the repeated measures model, where each

 Zi is an ni x 1 vector of ones. Our model is thus in some
 ways more general and in some ways more restrictive than

 the general ANOVA mixed model.

 2.2 A Growth Curve Formulation

 The mixed model that we use can also be seen to have
 origins in the growth curve literature, where a slightly

 different approach to modeling has been traditional. Here
 it is more natural to specify the model characterizing the
 growth curve for each individual unit and then to model

 the parameters of the individual growth curves as linear

 functions of individual characteristics. Specifically, for the
 growth curve formulation, we assume that

 yi = Zifii + ei, i = 1, ... ., m,

 where yi, ei, and Zi are as previously defined. The com-
 ponent Zi4i defines the ith individual's growth curve. The
 Pif's are random parameters unique to each individual; they
 are assumed to be independently distributed as N(Aia,
 D), where a and D are as previously defined, and Ai is a
 q x p design matrix. Thus

 E(yi) = ZiAiat = Xiat

 and

 var(yi) = 0.21, + ZiDZT,

 where Xi = ZiAi. It follows that Pi = Aia + bi, and thus
 bi can be viewed as a generalized residual vector referring
 to a deviation of the parameters of an individual's growth
 curve from the parameters of the population growth curve.
 This is in contrast to the ordinary residual defined as

 ri = yi - Xia. (2.2)

 It is often more natural to think in the context of the
 growth curve model, and many investigators find it easier
 to conceptualize the model using this approach. Using the
 growth curve formulation appears to imply certain mod-

 eling limitations. Specifically, the dimension of Zi deter-
 mines not only the structure of the covariance matrix Xi
 but also the model for the mean vector, ZiAioa. To model
 changes in level adequately, one may be forced to make
 the covariance structure overly complex. A second limi-

 tation is that forcing Xi = ZiAi implies that the only covari-
 ates that are allowed to change over time for an individual
 are those that can be expressed as interactions of individual
 covariates with the time design variables. In most settings,
 only one element in each column of Ai will be nonzero,
 thus any column of Xi must take the form ZQ)dj), where
 Z$J) refers to the jth column of Zi, and a is a suitable
 scalar. With the traditional growth curve formulation, in-
 dividual characteristics such as smoking status or treatment

 group cannot vary over time. A referee has noted, how-
 ever, that any model of the form (2.1) can be written as

 a generalized growth curve where we specify certain ele-

 ments of both ac and D to be zero. Setting the Z* of the

This content downloaded from 
�������������100.15.107.84 on Tue, 15 Dec 2020 03:11:24 UTC������������� 

All use subject to https://about.jstor.org/terms

Sam Portnow

Sam Portnow

Sam Portnow



 Laird, Lange, and Stram: ML Computations With Repeated Measures 99

 growth curve equal to Z* = (X', Zi), a*T = (T, 0), Ai
 = Ii, and

 D* 0 0] D* [??

 gives a model equivalent to (2.1).

 A special case arises with complete and balanced data,

 where Zi = Z and ni = n for all i and Ai = I (0 aT for
 an r x I vector ai, with qr = p and 0 the direct (Kro-
 necker) product. If we now let Y denote an n x m matrix

 with ith column yi, we can write

 Y = ZIA + R, (2.3)

 where R is an n x m matrix with ith column ri defined in
 (2.2), I is a q x r matrix obtained by suitably reshaping
 a, and A is an r x m matrix with ith column ai. Thus in
 this case our general model is the same as the growth curve
 model discussed by Potthoff and Roy (1964), Khatri (1966),
 and Grizzle and Allen (1969), except those papers gen-
 erally assume that ri is N(O, ;), with Y, an arbitrary n x
 n covariance matrix, whereas our general model assumes
 that X = cr2I + ZJDZT. This connection will be important
 in Section 4.1 on existence of closed-form solutions.

 2.3 Special Covariance Structures

 When D is assumed to be arbitrary, the implied covari-

 ance structure of yi, a.21 + ZiDZ7T, may be too restrictive.
 If we let Zi contain only the design on time, and not the
 individual characteristics, the covariance matrix is seen to
 be a function only of the pattern of observations and not
 of individual characteristics. In some settings, the covari-
 ance matrix may differ for subpopulations.

 Such dependence can be handled, using our general
 model, by allowing Zi to contain not only the design on
 time but also interactions of the time variables with in-
 dividual characteristics, and specifying that D be block
 diagonal.- This is best illustrated by an example. Suppose
 we have a simple setting involving two treatment groups,
 with individuals belonging uniquely to either one group
 or the other. Assume that repeated observations on an
 individual over time may be modeled as a linear growth
 curve with intercept and slope depending on treatment
 group. Let aT = (0, 1) or (1, 0) depending on whether
 the ith individual is in the first or second treatment group,
 let Z$1) be a vector of ones, and let Z$2) be a vector of times
 of measurement for the ith individual. Writing

 Yi = Zi 0 afTai + Zibi + ei

 would yield the desired model for the mean, with the
 covariance structure not depending on treatment (ai). Now
 suppose that we write

 Yi= Zi 0 aTfa + Zi 0 aTbi + ei,

 where bW is N(O, D*), with

 D [ o D2J

 and D1 and D2 being 2 x 2 positive definite matrices. We
 now see that if aT = (1, 0) (treatment group 1),

 Yi = Zi (a, + zj (b ') + ei, \a2/ bi

 and for aT = (0, 1),

 Yi = Zi ao3) + z (b j3) + ei \a4/ b*

 It follows that for treatment group 1,

 var(yi) = a2I + ZiDlZ7T,

 whereas for treatment group 2,

 var(yi) = q21 + ZiD2ZT.

 The four-dimensional vector b* is an artificial construct,
 since half of its components never actually enter the model.
 Defining bW as such shows that only minor modifications
 are needed to introduce this level of complexity into the
 general model. The restriction that D* be block diagonal
 is easily implemented in this model when one is using the
 EM algorithm by simply ensuring that the starting values
 satisfy this restriction. Allowing U2 to depend on a covari-
 ate would require modification of the basic algorithm pre-
 sented in the next section.

 3. COMPUTING FORMULAS FOR
 ML AND REML ESTIMATION

 In this section we describe the computing formulas for
 implementing the EM algorithm to produce maximum
 likelihood (ML) or restricted maximum likelihood (REML)
 estimates of the parameters. The equations are given with-
 out proof or derivation because they appear in numerous
 other papers, including Laird and Ware (1982). These
 equations have been encoded in a FORTRAN program,
 originally written by N. Cook (1982a) and modified by
 Daniel Stram.

 Let w (a) = 0, 1, . . ., oo) index the iterations, where
 w = 0 refers to the starting values (described in the next
 section) and w = oo refers to convergence. For a we have

 a() = ( X TWi X) E X TWiy), (3.1)

 where

 W$w@) - [i(@)]-1 (3.2)

 and

 a'= 'c)21 + ZjD(w)ZT. (3.3)
 Also define

 b$W) = D(WZTW$')r$ ), (3.4)

 where

 r$w@) = yi- Xia(w). (3.5)

 Let 0 denote the vector that contains qT2 and the non-
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 redundant, unknown components of D. Equations (3.1)-
 (3.5) hold for both ML and REML estimation of 0.

 For ML estimation of 0 we have, in addition,

 m

 ~(w(+1)2 - tE [(ri`) - ZjbVo))T(r$o) - ZibiW))

 + u(w0)' tr(I - U(W)2Ws(W))] N (3.6)

 and

 m

 D(0+1) - 2 [bw) b(,o)T + D(@)
 i=l

 x (I - ZTW$w)ZiD(0))]/m, (3.7)

 where N = T=1 ni is the total number of observations.
 For REML estimation we have

 m (+ )= { E[(ri - Zib (W)) T(ri - ZbWco))
 + o(w0)2 tr(I _ (,W)2pi(O))]}N (3.8)

 and

 m

 D(0+1) - E [b bo)T + D(@)
 i=l

 x (I - ZTPi(o)ZiD(w))]Im, (3.9)

 where

 Pi() = Wco) [I - Xi ( XTW$()Xi) XTWc)]

 (3.10)

 At convergence, we have in addition

 m -

 var(&) = ( XjWx) 1X

 and

 var(bi - bi) - D[I - ZTP?oZiD-].

 Note that application of these formulas requires re-
 peated inversion of each 1i to obtain Wi, even though
 >= XI'W X-needs to be inverted only once per iteration.

 But by using the matrix identity

 W, = [I - Zi(U2D-1 + ZTZ,)-1ZT]/a2, (3.11)

 we see that to compute Wi we need only invert D once
 and then invert the matrices o2D` + ZTZi, which ordi-
 narily have smaller dimension than the li's. A drawback
 of this approach to inverting 1i is that it requires D to be
 nonsingular, whereas Wi is well defined for arbitrary pos-
 itive semidefinite D provided that a2 > 0. Other simpli-
 fications occur in Equations (3.7)-(3.1O) if D-1 exists. A
 referee has pointed out that in some cases (q large relative

 to ni) it may be computationally more efficient to use
 Cholesky decompositions than to invert Zi (Kennedy and

 Gentle 1980, sec. 7.4; Dongarra, Bunch, Moler, and Stew-
 art 1979).

 Certain data and model configurations may give rise to
 an ML or REML estimate of D on the boundary of the

 parameter space (D not positive semidefinite). In this in-
 stance, convergence of the algorithm is not guaranteed.
 From (3.7) and (3.9) it would appear that D(W) will always
 be positive semidefinite provided D(?) is positive semi-
 definite and v(?) > 0, although D(@) may approach a sin-
 gular matrix in the limit. We have too little practical
 experience with this problem to suggest what the actual
 behavior of the algorithm will be in such cases.

 It is instructive to see what form these equations take

 when a2 = 0 and Zi = I,n or an appropriate subset of
 its rows. Assume that v(w) = 0 for any co = 0, 1,.
 Then from (3.4), Z1b$w) - ri(), and thus from (3.6) or
 (3.8), a("+1) = 0. For ML estimation of D, we have

 m

 D(w+l) = > (b (bo)T + RiW))/m, (3.12)
 i=1

 where

 b$W) - r(c) when ni = n

 = D(w)ZTDiW)-1ri() otherwise

 and

 Rw() = 0 when ni = n

 = D(W)(I - ZTDW(O)-ZjD(w)) otherwise.

 If ni = n for all i (no missing data), the algorithm reduces
 to IRLS:

 m

 D( +l) - 2 (r$w)r(,o)T)Im.
 i=1

 For REML estimation of D, we have

 m

 D(w+1) = > (b@) bo)T + R(W) + TVw))/m, (3.13)
 i=l

 where RiW) is as before, and

 TVW) - D(w)ZTDW()-lXj
 /m -

 x EXiTDW()-1Xj XiTDW()-1Z-D((O).

 Note that if Zi = I, DWO) - D(W), and R$W) = 0 as before,
 then

 m -1

 Ti() - Xi ( XTD(X)-1X> XTX

 so the REML version of IRLS (all ni = n) becomes

 D(0+l) = E [r(w)ri) + xi ( XTD(0) X)Xi Xj m.

 Formulas similar to (3.12) and (3.13) were given by
 Jennrich and Schluchter (1985), which are applicable when
 D is unstructured. If D has a patterned structure, the
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 general form of the M step must be modified and (3.12)
 and (3.13) no longer hold. For those cases in which the
 M step has no closed form, Jennrich and Schluchter sug-
 gested replacing the M step with one "scoring step," which

 yields a generalized EM (GEM) algorithm.

 For checking convergence of the algorithm, it is also
 useful to have expressions for the log-likelihoods. For ML
 we have

 m

 LML(OL, 0) = > (nlWil - r[Wiri)/2,
 i-l1

 and for REML we have

 ~ m

 LREML(O) = E[1n| Wil - ri Wjrf ]

 ln > X[W,X, 2,

 where

 m w 1 m
 ri-yi -iEX Wii EX iYi

 4. EXISTENCE OF CLOSED-FORM SOLUTIONS FOR
 BALANCED DATA SETTINGS AND COMPUTATION

 OF STARTING VALUES

 For complete and balanced data, that is, when ni = n
 and Zi = Z for all i, a sufficient condition for the existence
 of closed-form ML and REML estimates for all parameters
 (a, 0) is that the general model (2.1) take the more re-
 strictive growth-curve form (2.3). Szatrowski and Miller
 (1980) gave examples of certain mixed ANOVA models
 for which this condition is not necessary; however, their
 examples cannot be specified in the model (2.1) form,
 because they include random effects that are not indexed
 by individual units or by levels of metameter variables, or
 interactions between units and metameter variables.

 In this section, we give noniterative expressions for both
 ML and REML estimators of a and 0 in the growth-curve
 formulation. We also discuss two simple generalizations
 of the growth-curve model that also yield closed-form es-
 timates. Finally, we give expressions for starting values of
 the covariance component estimates to be used in iterative
 computations for unbalanced data settings, where closed-
 form estimates do not exist.

 4.1 Closed-Form Estimates for a

 For the growth-curve model (2.3) of Section 2.2, in which
 Xi = Z ) aT for all i, the generalized least squares esti-
 mator of location (3.1) reduces to the ordinary least squares
 (OLS) estimator, namely,

 m ~ 1m
 & = = [- X=TXj I XfyT, (4. 1)

 regardless of the forms of the Z and D matrices. To see

 this, reshape apx1 of model (2.1) into the t'qx. of the

 growth-curve model (2.3) so that

 & = vec(tT), (4.2)

 where vec(itT) stacks the r columns of 1T beneath each

 other to form ap x 1 vector. The ML estimate of t under

 arbitrary covariance structure (Khatri 1966; Grizzle and
 Allen 1969) is

 (ZTS-lZ)-lZTS-lYAT(AAT)-1
 where

 S = Y(I - AT(AA7)-1A)YT.

 One can apply Grizzle and Allen's (1969) approach di-

 rectly to the case in which X = c2I + ZDZT, to show that

 A = (ZTZ)-lZTYAT(AAT)-1. (4.3)

 Straightforward matrix algebra is used to show that (4.3)
 is equivalent to (4.1) and (4.2) in the balanced growth-
 curve model. The preceding results appear in the statistical
 literature in various forms and are established in a variety
 of ways (Anderson 1971, theorem 10.2.1; Szatrowski 1980,
 theorem 1; Reinsel 1982, 1984; Azzalini 1985).

 4.2 Closed-Form Expressions for the
 Covariance Components

 For the growth-curve model (2.3), noniterative ML es-
 timates of U2 and D are

 cML = tr(Y TMZY)(m(n - q)) (4.4)

 and

 DML = m 1CZYMAYTCZ - UML(ZZ), (4 5)

 where

 MZ = In - Z(ZTZ)-lZT,

 MA = Im - AT(AAT)-1A,

 and

 CZ = (ZTZ)-1ZT.

 Expressions (4.4) and (4.5) are perhaps most simply ver-
 ified by referring to Azzalini (1985), who studied a growth-
 curve model more general than (2.3). For REML esti-
 mation, one can extend Azzalini's approach to show that

 CREML - cML and that DREML is DML with m replaced by
 (m - r)-1 as one might anticipate. Reinsel (1982, 1985)
 gave expressions for unbiased estimates of U2 and D that
 are identical to the REML estimates given here. Equations
 (4.4) and (4.5) only yield ML (or REML) estimates if D
 is positive semidefinite.

 4.3 Two Simple Generalizations of the
 Growth-Curve Model

 The requirement that all individuals share a common Z
 matrix in the growth-curve formulation may be overly re-
 strictive in certain data-analytic settings. We can generalize

 (2.3) by defining different intraindividual design matrices
 Z* and Z for the mean and covariance structures, re-
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 spectively, where

 Z* =[Z :Zs,
 nx(q+s) nxq nXs

 such that ZTZS = 0. Another generalization of the growth-
 curve model accommodates special covariance structures,

 such as those described in Section 2.3. Under such gen-
 eralizations, closed-form ML and REML estimates of all
 parameters exist and are similar to those for the standard
 growth-curve model with random effects given previously.
 For more detail on growth curve modeling with patterned
 covariance matrices, see Lange and Laird (1986).

 4.4 Starting Values for Iterative Computations

 An iterative scheme must be employed when closed-
 form estimators for the covariance components do not
 exist, and such a procedure must begin with initial esti-

 mates of a2 and D. Criteria for good starting values are
 (a) initial estimates can be obtained under all configura-
 tions of data and models, and (b) if closed-form expres-
 sions for a2 and D exist, the method of obtaining starting
 values should find them. In case (b), our empirical evi-
 dence has shown that the EM method of iteration does

 not converge in one cycle to the MLE's of a2 and D from
 any allowable starting values, yet such a property has not
 been formally demonstrated. The lack of such a feature
 in the EM approach makes the choice of initial estimates

 all the more important.

 The choice of starting values is determined by the form
 of the model and the characteristics of the data. Following
 Cook (1982b), starting values for a2 and D under the gen-
 eral model (2.1) can be computed from OLS estimates of
 ac and bi as

 / m m

 ?o= ( YiTYi - && EXiTy~
 i=l ~~~i=l

 m

 - b iTZiT(y - O) (N - (m - 1)q -p)
 i=l

 and

 m m

 Do= bibf/m - > (ZifZ-/m,
 i=l i=l

 where &o is from (4.1) and

 = (ZTZi) - Z7'(Yi - XiAO).

 For the growth-curve model of Section 2.2, where each
 Zi is of full rank, these values can be improved. From
 Cook (1982b), we may let

 bi = (ZiTZ) IZfyi

 and begin iterations with

 a72 = Eyf Yi - 2 liTZITYi)/ (N - mq)

 and

 = m (m(n T mJ (ni Do [f bibT bi bi /m]/(m - 1)

 m

 A 2 (ZTZ)-l/m (4.6)
 i=l

 Notice that all of the preceding starting values require
 ZTZi of full rank. Whenever ZTZi is singular, as it would
 be when ni < q for some i, we may exclude such individuals
 from the computation of &0 and Do. Reinsel (1985) gave
 similar unbiased estimates for the growth-curve model,
 which could also be used. In any case, one should check
 for Do positive semidefinite before beginning the itera-
 tions.

 When fitting models with special, group-dependent
 covariance structures such as those described in Section

 2.3, we may specify starting values for the block diagonal
 D* by using (4.6) applied to each group. From (3.7) or
 (3.9) and the construction of the b* in Section 2.3, it is
 clear that elements of D * not in its diagonal blocks will
 remain set to 0 in subsequent iterations.

 5. SPEEDING CONVERGENCE
 OF THE ALGORITHM

 5.1 Characterizing Convergence

 A common criticism of the use of the EM algorithm in
 many settings, not just in variance component estimation,
 is that it can be extremely slow to converge, even when
 other methods such as Newton-Raphson or Fisher's scor-
 ing converge rapidly. The reason for this is that the EM
 algorithm is a first-order successive substitution method

 and will exhibit linear convergence at the end of the it-
 erations. For either ML or REML, we may write

 0(W) = g(O(,W1)) (5.1)

 for the appropriate mapping g. Using the first term of a

 Taylor series expansion of g we have

 O(w+1) - o(o) - g(0(w)) - g(000-1))

 j(co-1)(e(w) - O(W-1)

 where J('-1) is the matrix of partial derivatives J = ag(O)/
 ao evaluated at 0(w 1). For w large enough we will have
 J(Q) J' and thus

 0(w+1) - 0(w) _ J(0(w) - 00w-'))

 where JX is J evaluated at the limiting 0X. Thus JX deter-
 mines the rate of convergence of the algorithm near a limit
 point.

 In the exponential families setting,

 JX = [var(t I0 )]'-var(t I 0X, Y)

 where t is the complete data vector of sufficient statistics
 and y is the observed data (Dempster, Laird, and Rubin
 1977). In our setting t is composed of quadratic forms in
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 the residual vectors bi and ei (i = 1, . . . , m). It follows
 that the eigenvalues of J? are all between 0 and 1. These
 eigenvalues may be interpreted as fractions of missing in-

 formation, since var(t I 0X) is the information about 0 in
 the complete data vector (assuming that 0 is the natural

 parameter), and var(t I 00, y) may be interpreted as the
 information in the unobserved or missing data vector. Then

 JCn = 0 would imply no missing information and a supra-

 linear convergence rate. This will happen in the general

 multivariate setting when all individuals have complete

 data (a2 = 0 and Zi = Inxn)
 Further iterations produce differences in the parameter

 estimates iteratively as

 o(k+o+1) - 0(k+w) - (Joo)k+1(0(w) - 0(w-1)). (5.2)

 But this implies (e.g., see Gerald 1970, p. 182) that the
 left side of (5.2) will approach the eigenvector associated
 with A, the largest eigenvalue of JX (so long as A is distinct).
 In the limit then, A will dominate the convergence. A A
 near 1 implies very slow convergence; a A near 0 implies
 nearly quadratic convergence.

 5.2 Speeding Convergence

 Any linearly convergent successive substitution algo-

 rithm can be accelerated by using multivariate forms of
 the Aitken acceleration method (Gerald 1970). The basic
 idea is to employ an estimate either of J? or of ) to change
 the convergence behavior of the EM algorithm from linear

 to quadratic.
 It is useful to monitor the convergence of the EM al-

 gorithm by estimating A in the course of the iterations.
 One reasonable estimate of A is

 s

 A= > (06(O) - g(O))s(6 l)c-o c-2)), (5.3)
 i=l

 where s is the number of components of 0. This is the
 mean of the ratios of the differences of the individual
 parameter estimates obtained in the two most recent it-

 erations. If all of the parameter changes are approximately

 proportional, that is, if

 (O) - 0(w-1)) _(0(w1) - 0(w2))

 for i = 1, . . ., s, and if A is between 0 and 1, then it is
 A

 appropriate to use A to speed convergence. From (5.2) we
 can write

 or - 0(0- 1) = 0(O) - 0(-1) + 0(w+1) - o(w) +

 00

 -E k(o(w) - (oi-1)) =1(1 A) 1(O () _ 0( - 1))
 k=O

 Thus we can approximate 0* by

 -0 =(1) + 1/(1 _ A)(0(w) - 0())* (5.4)

 The expression for 0 (5.4) could then be used instead of
 9(w+1) in further iterations. Of course, it would be advisable

 to check that & actually increases the likelihood over (.
 This is similar to applying a univariate Aitken acceleration

 to each of the parameters being estimated.

 Another approach to speeding up the algorithm is to
 estimate J' rather than A and use a multivariate general-
 ization of the Aitken acceleration procedure. Following

 the same logic, we have

 or _ 0(o-1) + {I (J)k}(O(w) - 0(o-1))
 k=O

 Since J' has all of its eigenvalues between 0 and 1, the
 power series converges to (I - J-)-1. Thus to speed con-
 vergence we may try

 0 _ +(I-- ) (5.5)

 After checking that 0* increases the likelihood over 0(w),
 we replace 0(w+1) with 0(X).

 How then does one estimate J*? One could of course
 estimate JV by J(w). For ML estimation, it is not too hard

 to give explicit formulas for J(P), either by directly differ-
 entiating the updating formulas presented in Equations
 (3.6)-(3.9) or the formulas in Dempster et al. (1977), or

 by using methods discussed by Louis (1982). These cal-
 culations, however, would seem to get unbearably messy
 for REML estimation. It is, nevertheless, not generally

 necessary to know the form of J(0) to attempt the speedup.
 We can instead approximate J' from the past history of
 the iterations themselves. Thus for co > s we can approx-

 imate J(0) as

 J = O40O']-', (5.6)

 where Os is an s x s matrix of form

 [0(0) - 0(w1-) I 0(co-l) - 0(co-2) I I 0(W-s+l) _ (W-S)

 As co approaches co this procedure becomes numerically

 unstable because

 (0(co-1) - 0(co-2)) _ )(0(oj-2) - 0(w-3)

 and the inverse of 0(o-1) no longer exists. Of course, when
 this occurs we can simply switch to the A. method to ac-
 complish the same thing.

 5.3 Examples

 We illustrate these acceleration techniques on two data

 sets. The first set comes from a longitudinal experiment
 in energy conservation (Stram, Laird, and Ware 1985) and
 the second comes from a longitudinal study of low lead

 exposures in infants (Waternaux, Laird, and Ware 1985).
 In the first example, m = 138, p = 8, q = 4, and ni varies
 from 18 to 24. When individual growth curves were fitted

 to each experimental unit the R2's were uniformly high,
 between .8 and .98, suggesting relatively small residual
 errors e'.

 Figure 1 shows plots of several of the variance com-
 ponent estimates, against iteration number, calculated for
 the energy conservation data. For illustrative purposes,

 extremely poor initial values for D and U2 were used here.
 After six iterations, we calculated A and the RMSE of the
 summands of (5.3) as equal to .2204 and .0265, respec-
 tively. Since 2. was relatively close to 0 with a small het-
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 Figure 1. Plots of Variance Component Estimates Against Iteration
 Number for the Energy Conservation Example. The y axis is the value
 of the current estimate, and the x axis is the iteration number.

 erogeneity over the s summands of (5.3), we expect at this
 point in the iterations that the EM will converge readily,
 as seen in Figure 1. We could apply (5.4) at this point with
 O = 6, although it is probably unnecessary because A is
 so small.

 The second example has m = 214 and ni = 3 for most
 units, with ni = 2 or 1 for about 15% of the units. To
 illustrate the point that convergence depends on para-
 meterization, we use two models for the variance struc-

 ture. First, we assume that U2 > 0 and Zi is an ni x 2
 matrix whose first column is a column of ones and the

 second is a column of ages at observation (there are three
 possible ages). Thus q = 2, s = 4, and p = 5 for this
 parameterization.

 In contrast to the first example, when individual linear

 growth curves are fitted for units with ni = 3, the R2,s
 (adjusted for degrees of freedom) are generally low, be-
 tween .05 and .10. The convergence is very slow for these
 data. Figure 2 gives plots of the variance components ver-
 sus iteration number. We notice that the first few itera-

 tions, starting from fairly poor initial values, produced
 large step sizes. In the later iterations the algorithm was
 very slow to approach its final values. Even after more
 than 100 iterations the variance component estimates con-
 tinued to change in the third decimal place. After six it-
 erations of the EM on these data we estimated J using

 (5.6) as

 .7607 2.7226 1.3997 -4.1169

 A - - .0178 1.7790 .3019 -1.3840
 _ - .4552 -6.0342 2.5391 8.0242

 -.1122 -.5491 -.5458 1.41181

 The largest eigenvalue of this matrix equals .899, which
 corresponds well with the slow convergence of the esti-
 mates observed in Figure 2. The use of the A method at
 iteration 6 seemed inappropriate, however, because the
 summands in (5.3), namely

 (0(6) _ 0(5))/(0(5) - 064)), i = 1, . . ., 4,

 varied from 2.75 to .09, indicating that (0(5) - 0(4)) was
 nowhere near an eigenvector of J'. Nevertheless, good

 results were obtained for these data by the use of the
 multivariate Aitken acceleration method (5.5) when this
 procedure was applied at the 6th, 12th, and 18th iterations.
 The results are shown in Figure 2 as the line on the plots
 beginning at iteration 7.

 For our second parameterization of this problem, the
 mean vector Xioa remains the same but we assume that U2
 = 0, Zi = I if ni = 3, and a subset of the rows of I if ni
 < 3. Now q = 3 and s = 6, and we estimate two additional

 130-

 120 E- Ordinary EM Iterations

 a(w)2 110

 100\

 Aitkeni's Accelerated Iterations

 90 1

 so~
 0 5 10 15 20

 w (Iteration Number)

 110

 *- Ordinary EM Iterations

 D(w)

 50,

 Aitken's Accelerated Iterations

 30
 o 5 10 15 20

 w (Iteration Number)

 Figure 2. Plots of Variance Component Estimates Against Iteration
 Number for the Second Example, Using the Growth Curve Structure
 for the Covariance Matrix. Also shown are the results of Aitken's ac-

 celeration procedure as the shorter so/id iline. The doffed line denotes
 the final point of convergence. The y axis is the value of the current

 estimate, and the x axis is the iteration number.
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 variance components. In this case, the algorithm converges
 in only nine iterations. After the fourth iteration, 'A' =
 .162, and the summands in (5.13) range from .12 to .19,
 suggesting that 00) - 00) is close to an eigenvector of J.
 The proximity of A to 0 indicates a relatively low fraction
 of missing data, and its value is very close to the fraction
 of individuals with ni < 3. [We note that if we fail to
 initialize 2 = 0, the algorithm still converges to the same
 value of Y2 = 62I, + Z)DZT for some arbitrary a2> 0,
 but convergence is much slower, with A depending on in-
 itial o2. In fact, because (3.11) requires o2 > 0, we set o2
 = .0001 in the calculations. Inverting Xi directly would
 solve this problem.]

 Finally, we refit this model to the data after deleting
 any individual with ni < 3. Since we now have no missing
 data, we should have A = 0 (IRLS). Now the algorithm
 converges in four iterations; at the end A = .024 and the
 summands in (5.3) ranged from .021 to .028. It is clear,
 then, that if the repeat observations correspond to a small
 set of distinct ages, the use of an arbitrary structure for X
 rather than a variance component structure may give large
 gains in terms of faster convergence, especially if the frac-
 tion of missing data is small.

 Our recommendation for exploiting these extremely
 simple procedures for accelerating convergence is to at-
 tempt to use Aitken's acceleration method (5.5) first, but,
 if 0(o-1) is severely ill-conditioned, to switch to the A method
 (5.4), where the largest eigenvalue A is estimated by (5.3).
 In passing we note that the computational burden of these
 techniques is far less than that of performing an EM step
 and thus should always be considered as a convergence
 accelerator for any linearly convergent iterative algorithm.

 [Received May 1985. Revised July 1986.]
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