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EM A L G O R I T H M S  FOR M L  F A C T O R  ANALYSIS 

DONALD B. RUBIN AND DOROTHY T. THAYER 

EDUCATIONAL TESTING SERVICE 

The details of EM algorithms for maximum likelihood factor analysis are presented for both 
the exploratory and confirmatory models. The algorithm is essentially the same for both cases and 
involves only simple least squares regression operations; the largest matrix inversion required is for 
a q x q symmetric matrix where q is the matrix of factors. The example that is used demonstrates 
that the likelihood for the factor analysis model may have multiple modes that are not simply 
rotations of each other; such behavior should concern users of maximum likelihood factor analysis 
and certainly should cast doubt on the general utility of second derivatives of the log likelihood as 
measures of precision of estimation. 
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Introduction 

Maximum likelihood factor analysis can be conceptualized as maximum likelihood 
estimation in a multivariate normal model with missing data [Dempster,  Laird, & Rubin 
(1977) section 4.7]. Consequently, there exists a corresponding EM algorithm to find maxi- 
mum likelihood estimates. This algorithm is iterative, and each cycle, which consists of an E 
step followed by an M step, increases the likelihood of the parameters. We here explicitly 
define the E and M steps of the algorithm and present simple matrix expressions for 
carrying out the computations. 

The general theory of EM algorithms given in Dempster,  Laird, and Rubin [1977] 
proves not only that each iteration of EM increases the likelihood, even if starting from a 
point where the likelihood is not convex, but also that if an instance of the algorithm 
converges, it converges to a (local) maximum of the likelihood. Experience with EM algo- 
rithms suggests that, although the rate of convergence measured by number of steps can be 
slow, they reliably converge in a wide range of examples. Another advantage of EM 
algorithms, such as those for factor analysis, is that each iteration is simple to program and 
computationally inexpensive. Even for confirmatory factor analysis with correlations 
among factors to be estimated and a priori zeros in the factor loadings, each iteration of EM 
involves only simple matrix manipulations with the most  difficult task being the inversion 
of a q x q symmetric index, where q is the number of factors. A final advantage of EM 
algorithms is that they climb the hill of likelihood on which the starting point is located 
without leaping over valleys in the likelihood; that is, there is a continuous path in the 
parameter  space from the starting point to the stopping point along which the likelihood 
monotonically increases. This property is important when searching for multiple maxima, 
which apparently can easily exist in the factor analysis model as the example we present 
illustrates. 

Notation for the Factor Analysis Model 

Let Y be the n x p observed data matrix and Z be the n x q unobserved factor-score 
matrix, q < p. The rows of (Y, Z) are independently and identically distributed. The margin- 
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al distribution of each row of Z is normal with mean (0 . . . . .  0), variance (1 . . . . .  1) and 
correlation matrix R. The conditional distribution of the ith row of Y, Yi, given Z is normal 
with mean ~ + Z~ fl and residual covariance z 2 = diag(z 2 . . . . .  z2), where Z~ is the ith row of 
Z. 

Note that given the factors, the variables are independent. This assumption of con- 
ditional independence is the key one in the factor analysis model. 

The parameters to be estimated in general consist of ct, fl, z 2, and R. Since the marginal 
distribution of each row of Y is normal with mean ~ and covariance r 2 + ffRfl, the maxi- 
mum likelihood estimate (m.l.e.) of ct is Y. Thus for purposes of maximum likelihood 
estimation, we may replace (Y~s - as) by (Yo - ~) and consider the parameters to be (fl, z 2, 
R). For notational simplicity, we simply suppose ~ = 0 (i.e., the observed variables have 
been centered at the sample means). 

Consequently, the marginal distribution of Y given fl, z 2, R is normal with mean 0 and 
covariance matrix z 2 + ffRfl. The resulting log likelihood to be maximized is 

n 1 
YI( "¢2 -J- ff Rfl)- l y'i LL(z 2, fl, R) = - ~ log det(z 2 + fl'Rfl) - ~ 1 

n n 
= - ~ log det(z 2 + fl'Rfl) - ~ tr[Cyr(z 2 + fl'Rfl) -1] (1) 

where Cyy is the sample covariance of Y. 
Since LL(r:, fl, R) is viewed as a function of z2, fl and R for fixed Cyy, maximizing 

LL(z 2, fl, R) is equivalent to maximizing (2/n) LL(z 2, fl, R) + log det(Cyy) + p which equals 

f ( z  2, fl, R) = log det[Cyy(z 2 + 3'Rf l ) -1]  + p _ tr[Cyy(z2 + f fR f l ) -1] ;  

f ( z  2, fl, R) appears in Joreskog [1969]. 
The regression coefficient matrix fl is commonly called the factor-loading matrix and 

the residual variances in z 2 are commonly called the uniquenesses. Three common cases are 
defined by restrictions on the parameters: 

Case 1 : R = I (orthogonal factors) and unrestricted fl; 
Case 2: R = I and a priori zeroes in fl; 
Case 3: R free to be estimated and a priori zeroes in ft. 

Case 1 is sometimes referred to as exploratory factor analysis, and Cases 2 and 3 are 
sometimes referred to as confirmatory factor analysis. 

Computation of M.L.E. Using EM--Overview 

The EM algorithm treats the factor matrix Z as missing data, and iteratively maxi- 
mizes the likelihood supposing Z were observed. If Z were observed, the likelihood would 
be 

n 

2~ 
j=1 

exp - 2 ~ = ~ j = 1  zj A 

x [2n det R] -  2 1 ~ Z~R_XZ Q (2) 
exp[ - ~ i= 1 

The EM algorithm uses the complete-data likelihood (2) in order to maximize the actual 
likelihood of the parameters given Y, that is, in order to maximize expression (2) integrated 
over the missing data Z, which is equal to exp[LL(z 2, fl, R]. 
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There are two steps in each cycle of the EM algorithm. First, in the E step, we find the 
expectation of the logarithm of the complete-data likelihood given the observed data Y and 
the current estimated value of the parameter. Hence, the E-step requires us to find the 
expected value (over the distribution of Z given Y and parameters) of: 

1 =~ x ~ (Ytj--Ziflj) 2 n log(det R) 1 ~  
- -  - -  2 -- -- -- Z i  R -  1 Z ; .  (3) n log zj  --._~. 2 

2j=1 2 2,=1 • = j =  1 z j  

The second step of the EM algorithm, the M-step, requires us to maximize the expected log 
likelihood just as if it were based on complete data. This maximization yields the next value 
of the parameter. Using the new value of the parameter, we compute the next E-step and 
continue. As mentioned in the introduction, the general theory of EM algorithms given in 
Dempster, Laird, and Rubin 1-1977] proves that each iteration increases the likelihood. 

T h e  E-S tep  

Finding the expectation of (3) given Y and fl, z2, R requires finding the expectation of 
the following sufficient statistics (where we recall that the Y~ have been centered at the 
sample mean Y'): 

,(-, Y~ Yi 
Cyy = ~ , a p x p observed matrix 

. r . . -  tl 

~, Y; Z!, 
Cy~ = a p x q matrix 

1 n 

{-, Z'i Zi 
C= = ~ ~ ,  a q x q matrix. (4) 

t n 

Given T 2, R and fl, the (Y~, Z~) are i.i.d. (p + q)-variate normal. Thus, given ~ 2, R and/3, the 
conditional distribution of Zi given Y~ is q-variate normal with mean 6 Y~ and covariance A, 
where the regression coefficient 6 and residual covariance matrix A are given by: 

,~ = ( ~  + fl 'Rfl)-  ~(fl'R) 

A = R -- (Rfl)(z 2 + f f R f l ) - ' ( f i R ) .  (5) 

If a priori R = I, (5) reduce to 

(~ = ( : = fl, f l ) -  l fl, 

A = I - fl(z 2 + f f f l ) - l f l , .  (6) 

Thus, the conditional expectations of the sufficient statistics (4) given parameters z 2, fl, R 
observed data Y1 . . . . .  ,Y. are: 

g ( c y r  IV ,  qb) = Cyy 

E(G~ Iv, ¢)= c . , ~  

E(C= I Y,  ¢ )  = 6'C,,y 6 + A. (7) 

Equations (7) and (5) define the E step from observed data Y and current estimated 
parameters z 2, fl and R. Equations (7) and (6) define the E-step in the orthogonal factor 
model from observed data Y and current estimated parameters z 2 and ft. 
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Although the inversion of a p × p symmetric matrix appears in (5) and (6), in fact, only 
a q × q symmetric matrix need be inverted. Using Woodbury's identity we have: 

(z2 + f l , R f l ) -  I = , r-  2 _ ( .c2f l ,XR-1 + pT- ~p,)- ~(p~r- ~) (8) 

and when R = I, 

(.r2 + p,p)- ~ = .r-2 _ (z -2 f l , ) ( i  + f l z - 2 f l , ) -  1( f l~-2) .  (9) 

The M-Step Case 1--Unrestricted fl and R = I 

The M-step of the EM algorithm obtains the next value of parameters by maximizing 
the expected log likelihood found in the E - step, just as if the expected values of the 
sufficient statistics were the observed values of the sufficient statistics. First suppose that fl 
is unrestricted and that R -- I. 

By (7) and standard regression arguments, the m.l.e.'s offl and z 2 are given by 

p* = [,s'c.,~s + A ] - ' - ( c . ,~V  

z .2 = diag{Cyy - Cyy 5[~'C,y 5 + A]-  l(cyy 8)'}. (10) 

Using the estimators in (10) in place of fl and z 2 in (6) gives the next values of b and A; these 
new values of cS and A are then used in the right hand sides of (10) to obtain new values of fl 
and z 2, and so forth. 

The iteration between (10) and (6) is almost the method for maximum likelihood factor 
analysis described by Lawley and Maxwell [1963]. If in (10) we replace ~i'Cry ~ + A, which is 
the conditional expectation of C~, given Y, fl and z 2, by its unconditional expectation, i.e., 
the identity matrix, we obtain 

/~* = (Cry (~)' = fl(z z + fl'fl)-1Cyr (Lawley and Maxwell equation 2.6) 

f . 2  = diag(Cyy - fl*'fl*) (Lawley and Maxwell equation 2.8). 

These Lawley and Maxwell equations do not define an EM algorithm, and so this method 
does not necessarily enjoy the general convergence properties of EM algorithms. Lawtey 
and Maxwell [1971, 2nd ed., chap. 7] no longer propose their 1963 method. 

The M-Step  Cases 2 and 3 : a priori Zeroes in fl 

When there are a priori zeroes in fl, different Y-variables have different collections of 
"relevant" factors (that is, factors having nonzero ffs). Because the Yj j = 1, . . . ,  p given Z 
are conditionally independent, we can deal with each Y variable separately, although in 
practice all Y-variables with the same pattern of a priori zeroes in fl will be handled 
together. 

Consider the j th Y-variable with regression coefficient flj on Z. Reorder the factors so 
that /?~ = (fizz, floj)' where floJ are a priori zero and fllj are to be estimated. Similarly 
partition the matrices (6'Cry6 + A) and ~'Cyy so that (6'Cyy~ + A)a~ and (6 'C,)t j  corre- 
spond to the factors with nonzero coefficients for the j th  variable; in case 2 when R = I, 
and A are defined by (6), and in case 3 when R is to be estimated, ~ and A are defined by (5). 
The m.l.e, of fit from estimated sufficient statistics is 

fl'* = ( i l l  j ,  floj) (11)  J 

where 

Po* - -  (o  . . . . .  o )  
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and 

p~*j = [(~'C. ~ + A)Ij]-~(~'C.hj 

and the m.l.e, ofz~ from estimated sufficient statistics is 

• 12 = C.j - (C. ~)IL(~'C. ~ + A),j] - ~(~'C.hj 

where Crr j is the j th diagonal element of Cry. Then, f l*=  (fit . . . .  , fl*) and z .2 = 

In case 2, the M-Step leaves R fixed at I. In case 3, with R to be estimated, the m.l.e, of 
R at the M-step is simply the expectation ofC~= normed to be a correlation matrix: 

R* = normed[di'Cyy c~ + a]. (12) 

Consider an example with 9 variables, 4 factors, and 2 patterns of a priori zeroes 
among the coefficients: Suppose that variables 1-4 have a priori zero coefficients on factor 
4, variables 5-9 have a priori zero coefficients on factor 3, and otherwise there are no 
restrictions. Hence, in the notation of (11), for j = 1 . . . . .  4, fl1'~ consists of the coefficients on 
factors 1, 2, 3, fl~i consists of the zero coefficient on factor 4, (tYCyyt~ + A),j is the 3 x 3 
submatrix of ~'Cyy 6 + A consisting of its first three rows and columns, and (~'Cyy)li is the 
3 x 1 submatrix off 'Cyy consisting of rows 1, 2, 3 in columnj of6'Cyy. Fo r j  = 5 . . . . .  9,fl*j 
consists of the coefficients on factors 1, 2, 4, fl*j consists of the zero coefficient on factor 3, 
(6'Cyy ~ + A)I~ is the 3 x 3 submatrix of 6'Cyy ~ + A consisting of rows and columns 1, 2, 4, 
and (6'Cyy)~ is the 3 x 1 submatrix of(6'Cyr) consisting of rows 1, 2, 4 in columnj of6'Cyy. 

An Example 

The primary advantage of the EM algorithm for factor analysis over methods such as 
that described in J6reskog [1969], occurs with a priori zeros in the factor loadings because 
the EM algorithm does not require second derivatives to be calculated and so, in principle, 
requires substantially less storage. The Cyy in Table 1 is from J6reskog [1969]. Following 
J/Sreskog, we look for a four factor solution where, a priori, variables 1-4 have zero factor 
loadings on factor 4 and variables 5-9 have zero factor loading on factor 3; also, a priori, 
R = I .  

Starting values for the residual variances z 2 and regression coefficient matrix fl are 

m > 

C 
YY 

TABLE i 

Matrix for Example 

Variables 

i 2 3 4 5 6 7 8 9 

1 1.0 .554 .227 .189 .461 .506 .408 .280 .241 
2 1.0 .296 .219 .479 .530 .425 .311 ,311 
3 1.0 .769 .237 .243 .304 .718 .730 
4 1.0 .212 .226 .291 .681 .661 
5 1.0 .520 .514 .313 .245 
6 1.0 .473 .348 .290 
7 1.0 .374 .306 
8 1.0 .672 
9 1.0 
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given in Table 2 for three different starting solutions, all with R = I. Also given in Table 2 
are the results after 50 iterations of EM. 

Table 3 gives the values o f f ( z  2, p, R) and the rate of covergence for the slowest 
component of z 2 for every fifth iteration. 

The estimates for z 2 found by EM agree with those found by J6reskog's program from 
the same starting values. The relative performance of the two algorithms was not carefully 
monitored since it was not our objective to develop a competing packaged program. In fact, 
for this example, we did not optimize code at  all, but simply used existing regression 
operators to perform the calculations on square symmetric matrices. Nevertheless, it may 

Table 2 

Results of Three EM Factor Analyses for Data of Table 1 
Estimates 

2 
Variables Estimates for Factor Loadings, B for T 

il 

i 2 3 4 

1 0.31(0.70) 0.26(0.60) -0.59(0.30) 0.00(0.00)* 0.49(0.06) 
2 0.35(0.70) 0.30(0.60) -0.61(0.30) 0.00(0.00)* 0.41(0.06) 
3 0.66(0.70) 0.57(0.60) 0.20(0.30) 0.00(0.00)* 0.19(0.06) 
4 0.62(0.70) 0.53(0.60) 0.25(0.30) 0.00(0.00)* 0.27(0.06) 
5 0.29(0.70) 0.25(0.60) 0.00(0.00)* 0.66(0.30) 0.42(0,06) 
6 0.31(0.70) 0.27(0.60) 0.00(0.00)* 0.55(0.30) 0.53(0.06) 
7 0.34(0.70) 0.29(0.60) 0.00(0.00)* 0.53(0.30) 0.53(0.06) 
8 0.62(0.70) 0.53(0.60) 0.00(0.00)* 0.01(0.30) 0.34(0.06) 
9 0.61(0.70) 0.52(0.60) 0.00(0.00)* -0.09(0.30) 0.34(0.06) 

i 0.16(0.70) 0.65(0.60) 0.22(0.35) 0.00(0.00)* 0.50(0.17) 
2 0.21(0.65) 0.67(0.50) 0.39(0.50) 0.00(0.00)* 0.36(0.27) 
3 0.90(0.80) 0.08(0.50) 0.13(0.30) 0.00(0.00)* 0.16(0.16) 
4 0.84(0.70) 0.07(0.55) -0.00(0.40) 0.00(0.00)* 0.29(0.21) 
5 0.19(0.60) 0.65(0.50) 0.00(0.00)* 0.15(0.55) 0.52(0.27) 
6 0.20(0.65) 0.73(0.50) 0.00(0.00)* 0.02(0.55) 0.42(0.16) 
7 0.29(0.65) 0.55(0.30) 0.00(0.00)* 0.69(0.70) 0.14(0.08) 
8 0.78(0.80) 0.24(0.40) 0.00(0.00)* 0.02(0.40) 0.33(0.24) 
9 0.79(0.80) 0.18(0.40) 0.00(0.00)* -0.04(0.40) 0.35(0.25) 

1 0.70(0.70) -0.12(-0.12) 0.15(0.15) 0.00(0.00)* 0.48(0.48) 
2 0.74(0.74) -0.08(-0.08) 0.22(0.22) 0.00(0.00)* 0.40(0.41) 
3 0.39(0.39) 0.81(0.81) 0.33(0.33) 0.00(0.00)* 0.09(0.09) 
4 0.36(0.37) 0.75(0.75) 0.08(0.08) 0.00(0.00)* 0.30(0.31) 
5 0.65(0.65) -0.03(-0.03) 0.00(0.00)* 0.37(0.37) 0.44(0.44) 
6 0.72(0.72) -0.05(-0.05) 0.00(0.00)* 0.15(0.15) 0.46(0.46) 
7 0.60(0.60) 0.09(0.09) 0.00(0.00)* 0.35(0.35) 0.52(0.52) 
8 0.51(0.51) 0.65(0.65) 0.00(0.00)* 0.02(0.02) 0.32(0.32) 
9 0.47(0.48) 0.67(0.67) 0.00(0.00)* -0.12(-0.12) 0.32(0.32) 

Note: Starting values are given in parentheses and asterisked values are fixed 
at zero. Starting values arez ad hoc, near J~reskog solution and based 
on principal components analysis. 
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75 

Convergence of EM for Three Solutions of Table 2: 

Solution 1 Solution 2 Solution 3 

Iteration 

5 

i0 
15 
20 
25 
30 
35 
40 
45 
50 

2 2 2 
-f X--- ratio -f x - ratio -f x - ratio 

0.84402 1.4749 0.21636 1.0806 0.00951 0.9989 

0.49283 1.2112 0.08304 1.0392 0.00950 0.9996 
0.45383 1.0423 0.03803 1.0267 0.00949 0.9998 
0.44856 1.0146 0.02344 1.0193 0.00949 0.9998 
0.44680 1.0085 0.01866 1.0136 0.00949 0.9999 
0.44604 1.0062 0.01692 1.0095 0.00949 0.9999 
0.44568 1.0048 0.01620 1.0078 0.00949 0.9999 
0.44551 1.0038 0.01586 1.0062 0.00949 0.9999 
0.44542 1.0030 0.01569 1.0050 0.00949 0.9999 
0.44537 1.0024 0.01560 1.0041 0.00949 0.9999 

Note: 
2 

Column labeled -f is _f( 2 B, R). Column labeled T - ratio is the 
2 2 

ratio of Tj£ to T~,~_ I ~  where ~ refers to the iterations and j refers 

to the ratio farthest from unity. Thus, for solution i, 1.0024 means 

that the most rapidly changing T 2 from iteration 49 to 50 had a ratio 

of 1.0024. 

be of interest to note that in this small example (9 variables, 4 factors), 50 iterations of EM 
took but 30% longer than LISREL to reach about the same solution, but used about 20% 
less storage. These figures would no doubt change for larger examples and for optimized 
EM code, and also would vary with the shape of the likelihood being maximized, LISREL 
being very efficient for normal likelihoods (i.e., quadratic log-likelihoods). 

The fact that three different starting values lead to three essentially different (i.e., 
different z 2) solutions is quite interesting, and complicates the interpretation of any sol- 
ution. The first set of starting values is simply an ad hoc choice we make in order to test the 
coding for EM. Evidently, there is a broad but low maximum in the likelihood around the 
fixed values from this start because other ad hoc starting values converge to this solution. 
The second set of starting values is from JiSreskog [1969], and although the peak in the 
likelihood is much higher than for the first solution, it is apparently narrow in the sense that 
we must start near it to reach it. The third set of starting values is based on an initial 
principal components analysis, and also appears to be a relatively higher, narrow peak. 

We have no reason to believe that these are the only maximums for this problem. In 
fact, one referee points out that a two factor solution (i.e., all fl's in factors 3 and 4 set to 
zero) also appears to result in local maximum of the likelihood! Such behavior of the 
likelihood function should make any user of maximum likelihood factor analysis very 
uneasy. Minimally, the use of standard errors based on the second derivative matrix evalu- 
ated at a mode to measure precision of estimation should be viewed as being entirely 
questionable. 
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Discussion 

A general issue that deserves commentary is that when the sample sizes are moderate, 
we do not expect maximum likelihood estimates, no matter how obtained, to be very good. 
The reason is that the m.l.e, is a joint modal estimate of many location (fl) and scale 
(z 2 and possibly R) parameters which does not necessarily yield a good estimate ofz 2 unless 
the likelihood is unimodal and approximately symmetric. From the behavior of algorithms 
discussed earlier, we see that the likelihood can be multimodal and presumably, asym- 
metric. We have no reason to suspect that this problem is rare. 

Even with complete data in the linear model, maximum likelihood estimation is blind 
to the degree of freedom adjustments for variance estimates that correspond to adjusting 
for the dimensionality of the subspace of location parameters, i.e., the estimation of vari- 
ances should be from their marginal likelihood having integrated over location parameters. 
The resultant systematic underestimation of the uniqueness by maximum likelihood will 

2 = 0) too often. In standard normal problems this tend to yield Heywood cases (i.e., some zj 
adjustment for variances is simple and does not affect the location estimates since location 
and scale parameters appear in separate factors of the likelihood (i.e., are a posteriori 
independent). However, in the factor analysis model, the fl and z 2 likelihoods do not factor, 
and consequently the systematic underestimation of z 2 by maximum likelihood will affect 
both the estimates of z 2 and of ft. A better analysis, however, which estimates ~2 after 
integrating out the location parameters, does not appear to be computationally straight- 
forward. Nevertheless, it might eliminate the multiple modes in the likelihood, and so may 
be a worthwhile area for study. 

Of course, the entire issue of the sensitivity of results to the assumption of multivariate 
normality is important for the wise application of the technique in practice. It is quite 
possible that new latent trait (or hidden variable) models, rather than factor analysis, would 
be more useful in practice. As pointed out in Aitkin, et.al. [1981], the EM algorithm is a 
generally powerful computational tool for estimation in such models, and so the detailed 
presentation of the EM algorithm here for factor analysis can be viewed as simply an 
illustration of its use when searching for structure in multivariate data with the hidden or 
latent variables treated as missing data. 
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